

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: Mechanical Engineering

Program: <u>B. Tech.</u>

Subject	S Code	Semester	Credit	Duration (Hrc)	L ST P	cos	Statement	P01	P02	PO3	P04	PO5	PO6	P07	PO8	60d	P010	P011	P012	PSO1	PSO2
						C01	Technologies based on ecological principles and environmental regulations, which in turn helps in sustainable development.	-	-	3	-	-	2	3	-	-	-	_	-	3	-
ental Science	CC0-002	ßrd	0	45	0 0	C02	Conceptualize the processes and various factors involved in the formation of environment.	1	-	-	3	-	-	-	-	-	-	-	-	-	2
Environme	BMN0				1	C03	Recognize the importance of environment and the sustainable natural resources.	-	-	-	-	-	-	3	-	-	-	-	-	-	2
						C04	Use scientific reasoning to identify and understand environment problems and evaluate potential solution.	3	3	3	-	-	-	-	-	-	-	-	-	3	-

COURSE ARTICULATION MATRIX

						C05	Identify the impacts of human activities on environment and role of society in these impacts.	-	-	-	-	-	-	-	-	3	-	-	2	-	2
						CO1	Understand the material properties, stress and strain and application Mohr's circle.	3	1	-	-	-	-	-	-	-	-	1	1	1	1
MATERIAL-I	-301					C02	Understand, apply, analyse and design the beams using the concept of bending moment, shear force and stress in beams.	3	2	2	2	2	2	2	-	-	-	2	2	1	1
STRENGTH OF I	BMECS1	3rd	4	60	310	C03	Understand, apply, analyse and design the beams. Column and struts using the concept of slope, deflection of beams and columns.	3	2	2	2	2	2	2	-	-	-	2	2	2	2
						C04	Understand, apply, analyse and design the shafts and frames using the concept of forces and stresses.	3	2	2	2	2	2	2	-	-	-	2	2	1	1
S						C01	Ability to apply various thermodynamics laws to real system	3	2	-	-	-	-	2	-	-	-	-	1	1	1
MAMIC	31-303	ġ	_	0	1 0	C02	Understanding of the entropy of system and ideal gas equations	3	-	2	-	-	-	2	-	-	-	-	1	1	1
HERMOD	BMEC ⁵	3r	4	9	3 1	CO3	An understanding of the interrelationship between thermodynamic cycles	-	3	3	2	-	-	1	-	-	-	-	1	2	1
Ţ						C04	Ability to use Properties of Pure substances in real thermodynamics problems.	-	3	2	2	-	-	-	-	-	-	-	-	2	

						C01	Apply mathematical knowledge to predict the fundamental properties and characteristics of a fluid.	3	3	3	1	-	2	-	-	-	-	-	1	1	
S						C02	Can analyze and calculate major and minor losses associated with pipe flow in piping networks.	3	3	3	-	-	2	-	1	-	-	-	2	2	1
ECHANIC	S1-302	ßrd	4	60	10	CO3	Can mathematically predict the nature of physical quantities.	3	3	3	2	-	-	3	-	-	-	-	3	1	1
FLUID M	BMEC	(1)			æ	C04	Can critically analyze and evaluate the performance of different models and prototypes.	3	3	3	-	1	-	3	-	1	-	1	2	1	1
						C05	Students will understand the Laminar and Turbulent behaviour of fluid under different conditions and analyze different type of losses in real fluid flow systems	3	3	3	3	_	_	3	-	_	-	-	3	1	
(Design-I)							Student will be able to measure the various mechanical properties of various materials.	3	2	1	1	2	1	1	1	2	1	1	1	1	1
ng Lab-I (-304				0		Student will be able to measure the bending stress and deflection in beams.	2	2	3	1	2	1	1	-	1	1	1	1	2	1
cal Engineeri	BMECS1	3 rd	2	30	00		Student will be able to measure the strain energy and spring stiffness of a helical spring.	2	3	2	1	2	1	1	-	1	1	1	1	1	1
Mechani							Student will be able to calculate load carrying capacity of long columns and their buckling strength.	2	2	3	2	2	1	1	-	1	1	1	1	1	2

hanics	11						Students shall be able to understand problems related to Mechanics	1	1					2		1	1			2	1
eering Mec	MECE0-00	3rd	4	60	310		Shall be able to apply this knowledge to find solution of engineering problems			2								2		2	1
Engine	В						This will make student learning life long	3	3	1					2	3	3	1		2	1
							Students can use knowledge in new areas													2	1
							1. To understand and analyze basic DC and AC circuits.	2	3										1		3
onics &							2. To study the use and working principle of single- phase transformers.	2					3						1	3	
Basic Electr							3. To study the application and working principles of three phase and single-phase induction motors.	2					3						1	3	
							4. To introduce to the components of low voltage electrical installations.	2					3						1	3	
HINES	03					1	Students will be able to learn general concepts of fluid and turbo machinery	3	3	3	-	1	3	-	-	1	-	-	1	1	1
MACI	:CS1-4	4 TH	4	60	310	CO	Concerting the concerting of the	3	3	3			2				1		2		
	BME					C02	can critically analyze the performance of different types of turbines.	5	5	5	-	-	2	-	-	-	1	-	2	2	1
F						CO3	Can critically analyze the performance of different types of pumps	3	3	3	-	-	-	-	-	1	1	1	2	1	1

						CO4	Can critically analyze working of practical hydraulic systems.	3	3	3	-	-	-	1	-	-	-	3	-	2	1
						CO5	Able to evaluate working and performance of various turbo machines.	3	-	-	3	1	1	-	1	-	-	-	2	1	1
						CO6	Analyze and create practical hydraulic systems.	-	3	3	3	-	-	-	1	-	2	2	1	1	1
						C01	The students will get a good understanding of various practical power cycles and heat pump cycles.	3	3	-	-	-	-	-	-	-	-	-	-	1	1
d Thermodynamics	3MECS1-404	4 TH	4	60	310	C02	The students will be able to analyze energy conversion in various thermal devices such as combustors, air coolers, nozzles, diffusers, steam turbines and reciprocating compressors.	3	3	-	1	-	-	1	-	-	-	-	-	2	1
Applied	Ш					CO3	The students will be able to understand phenomena occurring in high speed compressible flows	3	2	-	-	-	-	-	-	-	-	-	-	1	1
n &						C01	Understand the necessity of automation.	3	2			2	2	2	2	3		3	3	2	1
utomatic	S1-E 1.3	1 TH	3	45	0 0	C02	Implementation of fluid power control elements in modern industry.	3	3	3	3	3	2	3	3	3		3	3	1	1
lustrial A	BMEC	7			3	CO3	Design automatic Material handling systems	3	2	2	3	3	3	2	2	3		3	3	2	1
Ind						C04	Design and control of robotic manipulators.	3	3	3	3	3	3	2	2	2		3	2	2	1

						C01	To make students understand the principles and requirements of production drawings.	3	-	1	-	-	-	-	-	-	-	1	-	1	1
Drawing using CAD	AECS1-405	4 TH	с	45	104	C02	To understand how to assemble and disassemble important parts used in major mechanical engineering applications.	3	-	-	-	-	-	-	-	-	1	-	-	1	1
Machine [BN					CO3	To understand the better utilization of software like AutoCAD	1	-	-	1	-	1	-	-	1	-	-	2	2	1
2						C04	Student gets aware about the free hand drawings of the different joints.	3	1	1	-	-	-	-	-	1	2	-	3	1	
Engineering	CS1-401	4 TH	£	45	0.0	CO1	Student will be able to identify crystal structures for various materials and understand the defects in such structures.	3	3	2	3	3	1	1				2	3	1	1
Materials	BME				£	C02	Understand how to tailor material properties of ferrous and non-ferrous alloys.	3	3	3	1	3	1	2				3	3	2	1
H OF	402					C01	Understand the concept of strain energy and various theories of failure.	3	1	-	-	-	-	-	-	-	-	1	1	1	2
STRENGT	BMECS1-	4 [™]	4	60	310	C02	Understand, apply, analyse and design the thin and thick cylinders, rotational discs through the concept of stress calculation.	3	2	2	2	2	2	2	-	-	-	2	2	2	1

						CO3	Understand, apply, analyse and design the curved beams and beams through the concept of stress calculation in curved beams and shear stress in beams.	3	2	2	2	2	2	2	-	_	_	2	2	1	1
						C04	Understand, apply, analyse and design of open and closed helical spring, leaf spring, flat spiral spring through the concept of calculation of strain energy and stresses.	3	2	2	2	2	2	2	_	_	_	2	2	2	1
RING LABORATORY	51-406	н	-	0	0 2	COI	The students will be able to measure various properties of fluids.	3	3	-	-	1	-	-	-	2	-	-	-	2	1
MECHANICAL ENGINEEF	BMEC	7		m	0	C02	The students will be able to characterize the performance of fluid/thermal machinery	3	3	-	-	2	-	1	-	2	-	-	-	1	2

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2019)

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	COs	Statement	P01	P02	PO3	P04	PO5	PO6	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2
						CO1	Know the layout, constructional and working of power unit and fuel supply system of an automobile.	3	3	3	1	1	2	2	2	3	2	1	2	1	1
ineering	503					C02	Know the functioning of lubrication, cooling and suspension system of an automobile.	3	3	3	1	1	2	-	1	3	1	1	2	2	1
itomobile Eng	BMECS1 -	5	3	45	300	CO3	Know construction and working of transmission, steering and braking system of an automobile.	3	3	2	2	1	1	-	2	3	2	1	2	2	1
Ā						CO4	Know working of starting and electrical systems of an automobile. Also get knowledge of recent developments in the automobile field.	3	3	3	2	2	2	2	2	3	3	3	3	1	1
						C01	Formulate and analyze a heat transfer problem involving any of the three modes of heat transfer	3	3	2	1	1	2	2	1	2	1	2	2	2	1
HEAT TRANSFER	BMECS1-501	5	4	45	310	C02	Obtain exact/approximate solutions for the temperature variation using analytical methods where possible or employ approximate methods or empirical correlations to evaluate the rate of heat transfer.	3	3	3	3	2	2	2	1	2	1	2	2	1	1

						CO3	Design devices such as heat exchangers and also estimate the insulation needed to reduce heat losses where necessary.	3	3	3	3	3	2	3	1	2	1	1	2	2	1
						CO4	Apply the boiling and condensation heat transfer principles to engineering problems.	2	2	3	3	2	2	3	1	2	1	1	2	1	1
						C01	Ability to use knowledge to solve industrial problems.	3	3	3	3	2	-	1	-	3	1	-	1	1	2
						C02	Understand general and specific working procedures in the field of engineering.	3	3	3	3	3	2	2	-	2	1	-	1	2	2
trial Training	ECD1-722	5	3	06 w ee	000	CO3	An understanding of the impact of engineering solutions and industrial safety.	2	3	3	3	3	3	3	-	-	1	-	-	2	1
Indus	BM			ks		CO4	Ability to communicate effectively in the working environment.	2	2	3	2	2	3	3	1	1	3	1	-	1	1
KINEMATICS AND THEORY OF MACHINES	BMECS1-504	5	4	60	310	CO1	The primary object of the course is to make the student understand the concept of: displacement, velocity and acceleration of simple mechanisms, cams and cam profiles of various cams, using different followers and motions.	3	2	-	-	1	-	-	-	1	-	-	2	1	2

				C02	The students will able to understand constructional and working features of important machine elements.	3	1	2	1	1	-	-	-	1	-	-	2	2	2
				CO3	The students should be able to understand various parts involved in kinematics of machines including balancing of single and multiple rotating masses Gyroscopic motion and couples.	3	2	3	1	3	-	1	-	-	_	-	2	1	1
				CO4	The students should be able to understand gear trains, belt rope and chains, and governors	3	2	2	2	2	1	1	-	-	_	-	3	2	1
M & HT)				C01	Define metrology and apply concept of metrology to engineering applications	3	2	2	3	3	2	2	1	1	2	2	3	3	2
ORY-III (MM				C02	Understand the basic measurement units and able to calibrate various measuring devices.	3	1	2	3	3	2	1	1	2	3	1	3	1	1
INEERING LABORAT	5	1	0 0 2	CO3	Use measuring tools such as Sine bar, surface roughness tester, profile projector, Tool Maker Microscope, stroboscope, Micrometer, etc.	3	2	1	3	3	1	1	1	3	3	2	3	2	2
MECHANICAL ENG				CO4	Perform steady state conduction experiments to estimate temperature distribution and thermal conductivity of different materials	3	3	3	3	3	2	3	1	3	2	2	3	1	2

					CO5	Perform transient heat conduction experiments	3	3	3	3	3	2	2	1	3	2	2	3	2	1
					C06	Estimate heat transfer coefficient in natural, forced convection and condensation and boiling process also.	3	3	3	3	3	2	2	1	3	2	2	3	2	1
					C07	Determine surface emissivity of different surfaces and Stefan Boltzmann's constant	3	3	3	3	3	2	2	1	3	2	2	3	2	1
(MO					C01	To deliver basic knowledge of different components of automobiles	3	3	2	2	2	2	1	-	2	-	2	3	1	1
IV (AE & T					C02	To understand functioning of different systems of automobile.	3	2	1	-	1	-	1	-	-	-	-	2	2	2
ING LABORATORY-	MECS1-506	5	1	0 0 2	CO3	To enhance knowledge of fault diagnosis and troubleshooting capabilities of different systems of an automobile.	3	3	3	1	1	1	1	-	-	-	-	2	2	2
MECHANICAL ENGINEER	BI				CO4	The main objective of the course is to make the student understand regarding link pair and chains, motorized gyroscope, gear and gear trains and Cams, also knowledge of gyroscopic effect, gyroscope active and reactive couple for ships.	3	3	3	3	1	1	1	-	1	1	-	3	2	1

logy						C01	Understand the classification of measurements and measurement standards used in industrial applications. To introduce concepts of linear, angular, roughness thread, gear measurements, limits, fits and tolerances.	3	3	3	2	3	2	2		2	 3	3	2	1
nent & Metro	-502				0	C02	Understand about various errors in measuring systems and evaluate the errors by statistical methods.	3	3	2	2	3	1	1			 3	3	2	1
ical Measurer	BMECS1	5	3	45	30(CO3	Know about functions and types of sensors and transducers and their utility in instrumentation.	3	3	3		3					 2	3	1	2
Mechani						CO4	Use various instruments for measurements like pressure, flow, temperature etc. In process industry manufacturing.	3	3	3	2	3	1				 2	3	2	1
ufacturing	23					C01	Understanding operating principles and constructional features of hydraulic and pneumatic systems.	3	2			2	2	2	2	3	 3	3	1	2
Automation in Man	BMECD1-62	6	3	45	300	C02	Choose appropriate PLC and explain the architecture, installation procedures and trouble shooting and can develop PLC programs using various functions of PLCs for a given application.	3	3	3	3	3	2	3	3	3	 3	3	2	1

						CO3	Explain the application development procedures in SCADA and manage data, alarm, storage and can explain the architecture of DCS.	3	2	2	3	3	3	2	2	3	 3	3	1	2
						CO4	Describe the advanced controller elements and program methods.	3	3	3	3	3	3	2	2	2	 3	2	1	1
						CO1	Concept of machine design and procedure for selection of materials	3	3	3	2						 	3	2	2
N						C02	An overview of the design methodologies employed for the design of various machine components	3	3	3	2						 	3	2	1
iine Element	1-602		_		0	E03	Understand the relationship between component level design and overall machine design	3	3	3	3						 	3	1	1
Design of Mach	BMECS	6	4	60	31	CO4	Understand the concept of design software and their utility/ application for designing of different machine components	3	2	3		3					 	3	2	2
nd Jet	12					C01	To apply the concepts of compressible flow.	3	2			2	2	2	2	3	 3	3	2	1
ynamics a	AECD1-6:	6	3	45	300	C02	To understand the phenomenon of Shock Waves.	3	3	3	3	3	2	3	3	3	 3	3	2	2
Gas D	ΒN					CO3	To apply gas dynamics principles to jet propulsion.	3	2	2	3	3	3	2	2	3	 3	3	2	1

						CO4	To understand the working of rocket engine and propellants.	3	3	3	3	3	3	2	2	2		3	2	1	2
<u>gines</u>						C01	The basics of IC engines	3	2			2	2	2	2	3		3	3	1	1
ustion En	01-611	G	2	46	0 (C02	Fuel supply and combustion in IC Engine	3	3	3	3	3	2	3	3	3		3	3	2	2
al Comb	BMECI	0	5	45	3 (CO3	Engine cooling and lubrication	3	2	2	3	3	3	2	2	3		3	3	2	1
Intern						C04	Testing and control of engine emissions.	3	3	3	3	3	3	2	2	2		3	2	1	1
						C01	Ability to plan and implement an investigative or developmental project given general objectives and guidelines.	3	3	3	2	1	1	1	2	1	1	2	1	1	1
<u>ject</u>	505					C02	In-depth skill to use some laboratory, modern tools and techniques.	1	1	1	1	3	2			1		1	2	2	2
<u>Major Pro</u>	BMECS1-6	6	1		0 0 2	CO3	Ability to analyze data to produce useful information and to draw conclusions by systematic deduction.	1	1	3	3	1		1		2	1	2	1	2	1
						CO4	Facilitate significant individualized interactions between faculty members and students through a multi-term research experience.	1	1		1		2			З	2	1	1	1	1
<u>Manutacturing</u> Technology &	BMECS1-601	6	4	60	400	C01	Able to apply knowledge of manufacturing processes and the skills to develop and manipulate the operating parameters for a given process.	3	3	3	2	2	2	1				2	3	2	1

					C02	Able to understand processing of plastic and ceramic materials.	3	2	1	2	2	1	2				2	3	2	1
					CO3	Ability to understand the latest technologies in casting and welding processes will get increased.	3	3	1	2	3	1	2				3	3	2	2
					CO4	Students will be able to come up with innovative conceptual idea about latest manufacturing processes and their industrial applications.	3	3	3	3	2	2	1				2	3	1	1
b- V(MP)	603				C01	Understand the different manufacturing and fabrication processes which are commonly employed in the industry, to fabricate components using different materials.	3	3	3	3	2	2	1		1		2	3	1	1
anical La	MECS1-	6	1	002	C02	Fabricate components with their own hands.	3	3	3	1	3	1	1		2		2	3	2	1
Mech	B				CO3	Acquire the practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.	3	3	1	1	3	1	1				1	3	1	1
ab- VI	604				C01	Analyse the microstructure of different ferrous and non-ferrous samples.	3	3	1	3	3	1	2	2	3	1	1	3	2	1
<u>Mechanical I</u> (MSM)	BMECS1-	6	1	002	C02	Explore the effect of heat treatment on various engineering materials by analysing its microstructure and hardness.	3	3	1	3	3	1	2	2	3	1	1	3	2	1

IATION						C01	Define Microprocessor and Microcontroller family and working of 8085 Microcontroller Architecture and Programming model.	3	3	1	3	3	1	2	2	3	1	1	3	2	1
IN AUTON	1-622				0	C02	Understand the programming of 8085 and 8255 microprocessors.	3	3	1	3	3	1	2	2	3	1	1	3	2	1
AICROPROCESSORS	BMECD1	6	3	45	3 0 (CO3	Understand the concept of Timer, Interrupt, I/O Port interfacing with 8251/8253 microcontroller and advanced features of 8086/8088.	3	3	1	З	3	1	2	2	З	1	1	3	1	2
						CO4	Understand the concept of digital control interfacing with Real time system.	3	3	1	3	3	1	2	2	3	1	1	3	2	1
						C01	Describe sources of energy and types of power plants.	2	1	1	1	1	2	3	1	1	2	1	2	2	1
ling					C02	Analyze different types of steam cycles and it's efficiencies in a steam power plant,	3	3	3	3	2	2	2	1	2	3	1	3	2	1	
ieering	ε					CO3	Describe basic working principles of gas turbine and diesel engine power plants.	2	1	1	1	1	2	3	1	3	2	1	3	1	2
er Plant Engin	er Plant Engineerin BMECD1-613	6	3	45	300	C04	Define the performance characteristics and components of such power plants.	3	3	3	3	2	2	1	1	3	2	1	3	2	1
Pow						CO5	List the principal components and types of nuclear reactors.	2	1	1	1	1	1	1	1	2	2	2	3	2	
						C06	List types, principles of operations, components and applications of steam turbines, Steam generators, condensers, feed water and circulating water systems.	2	2	2	2	2	2	2	1	2	2	2	3	2	

						C07	Estimate different efficiencies associated with power plant systems.	3	3	3	3	2	2	3	1	3	2	2	3	1	1
						C01	Understand the basics and key elements of Mechatronics design process	3	1	1	1	2	2	1	1	2	1	1	3	2	1
Systems	-621					C02	Familiar with basic system modelling	3	1	1	1	3	2	1	1	2	1	1	3	2	1
Mechatronic	BMECD1	6	3	45	300	CO3	Understand the concepts of engineering system and dynamic response of the system	3	2	1	1	3	2	1	1	2	1	1	3	1	2
						CO4	Realize the concepts of real time interfacing and data acquisition	3	2	1	1	3	2	1	1	2	1	1	3	2	1

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	cos	Statement	10d	P02	PO3	PO4	PO5	90d	PO7	80d	60d	P010	P011	P012	PS01	PS02
S						C01	To develop the solutions of ideal fluid flows	2	2	3	З	1	1			1	1	1	2	2	1
Mechanic	724					C02	To apply the knowledge of fluid mechanics governing equation	1	2	3	3	1	1	1	1	1			1	2	1
anced Fluid	BMECD1-	7	3	45	300	CO3	To develop solutions for near wall flows	1	3	3	3	2	1	1			1	1	1	2	1
Adv						C04	Apply the mathematical modeling techniques for fluid mechanics problems		3	3		2	2	1					1	2	1

						CO1	Understand the importance of RP technology in view of product development and innovation in various fields.	3	2			2	2	2	2	3		3	3	3	1
cturing	13					C02	Implement the knowledge, techniques, skills of Product Prototyping and modern tools like CAD.	3	3	3	3	3	2	3	3	3		3	3	2	1
Additive Manufa	BMECD1-73	7	3	45	300	CO3	Understand the various RP techniques and manufacturing methods that enable student to provide solution to Rapid prototyping problems.	З	2	2	3	3	3	2	2	З		3	3	3	1
						CO4	Demonstrate comprehensive knowledge of the broad range of RP tooling, application area of RP and indirect methods of RP tooling production.	3	З	3	3	3	3	2	2	2		3	2	2	1
						CO1	Learn various composite materials and their applications.	3	-	2	-	3	2	2	-	-	-	3	3	2	2
ials						C02	Understand PMC and their processes.	3	-	3	2	3	1	2	-	-	-	3	2	2	1
ite Mater	CD1-722	7	3	45	300	CO3	Learn about Metal matrix Composites and their processes.	3	1	3	2	1	-	-	-	-	-	2	2	3	1
Compos	BME					C04	Understand to develop Ceramic Matrix Composites.	3	1	2	1	3	-	_	_	-	-	3	3	2	1

Design	1					C01	To apply the basics of design software and hardware requirements for designing of mechanical component using computer.	3		3	2	3						3	3	2	2
r Aided	:CD1-71	7	3	45	3 0 0	C02	Make the representation of curves, surfaces and solids.	3	2	3	1	3						2	2	2	1
Compute	BME					CO3	Understand the concepts of visual realism of models and assembly of components.	3	3	3	1	3						3	3	3	1
						CO4	Describe CAD Standards and concepts of design of components using FEM.	3	3	1		3						3	3	2	1
						C01	Understand the basic concept and design methodology of heat exchangers.	3	2	3	1	1		2					2	З	2
anger Design	CD1-714	7	3	6 W	0 0	C02	Predict the thermal performance important heat-exchanger design parameters due to fouling.	1	3	2	2	2		1						1	3
Heat exch	BME			k	0	CO3	Determine general design requirements for different types of heat exchangers.	2	2	3	2	1		1				2	1	2	2
-						CO4	Analyze performance evaluation of different heat exchanger and phase change heat exchangers	1	2	2	2	1		1		1		1	1	1	2
Industrial Training	BMECS1-704	7	3	45	300	C01	To enable students to implement Project Planning in their Industrial In-plant Training Project work.	2	3	3	3	3	1	1	-	1	1	-	-	1	3

						C02	To understand the concept of Facility, Location & Layout & implement in Industry.	1	1	-	-	-	3	3	-	2	1	1	1	2	2
						CO3	Develop the ability to work as an individual and in group with the capacity to be a leader or manager as well as an effective team member.	1	-	1	1	1	3	3	3	3	2	2	2	1	2
						CO4	Master the professional and ethical responsibilities of an engineer.	-	-	-	1	-	3	2	3	3	3	2	1	2	3
DN						C01	To model machine parts, its assembly and design analysis using software.	3	3	2	1	2	-	-	-	-	-	-	2	2	1
NGINEERII ORY-VII	1-702				2	C02	To learn the modeling of geometrical transformations, curves, surfaces and solids.	3	2	3	2	2	1	1	-	-	1	-	2	2	2
ECHANICAL E LABORAT	BMECS	7	1	30	0 0	CO3	To understand the part programming for CNC Machines.	3	3	2	1	3	-	-	-	-	-	-	З	3	2
N						C04	To learn the programming of robots	3	3	1	1	1	-	-	-	-	-	-	2	2	2
l Vibrations	01-723	7	2	45	0 0	C01	The student will be able to understand fundamental principles, types and applications of mechanical vibrations and their measuring instruments.	3	2											2	1
Mechanica	BMECI	,	5	40	3 (C02	The student will be able to understand and solve for natural frequency of single degree of freedom system with free, damped and forced vibrations.	3	3	1	1		1							2	2

						CO3	The student will be able to understand and solve for natural frequency of two degree and multi-degree of freedom systems.	3	3	1	1		1					3	2
						CO4	The student will be able to understand vibrations in continuous systems such as string, bars, beams and circular shafts.	3	2									2	1
						C01	Explore Basic principles, scope and applications of Non-Destructive Testing technique.	3	2	2	1	3	3	3	 	 2	3	2	2
ting						C02	Apply fundamental concepts of Non- Destructive Testing to select the appropriate technique for a given application.	3	3	2	3	3	1	2	 1	 2	3	3	2
-Destructive Test	BMECD1-721	7	3	45	300	CO3	Detect any defects in ferrous and nonferrous metals, plastics by utilizing underling principle of Ultrasonic testing.	3	3	2	3	3	2	1	 1	 2	3	3	2
Non						C04	Distinguish various nondestructive techniques, advantages and disadvantages of individual technique. Even more, will be able to interpret the concept of radiography.	3	2	3	2	3	2	1	 	 2	3	2	2

						C01	Apply the fundamental principles of refrigeration and air conditioning system.	3	2	2	1	1	-	-	-	-	-	-	2	2	2
ng Laboratory-VIII	-703					C02	Compute the cooling capacity and coefficient of performance by conducting test on vapour compression and vapour absorption refrigeration systems.	3	3	3	2	1	-	-	-	1	-	-	2	2	2
Engineeri	BMECS1	7	1	30	0 0	CO3	Calculate cooling load for air conditioning systems used in large buildings.	3	3	3	3	2	2	1	-	1	-	-	2	2	1
Mechanical						CO4	Will explore the psychometric concept during visit to a central Air conditioning plant and further apply this concept in performance testing of window type room air conditioner.	3	2	2	2	2	2	-	_	-	_	_	2	2	2
ioning						C01	Understand the fundamental principles, operate, and analyze the refrigeration and air conditioning systems.	3	3	2	-	1	-	-	-	2	-	-	-	3	2
nd Air condit	nd Air conditionir CS1-701	7	3	45	0 0	C02	Compute cooling capacity and coefficient of performance of various refrigeration systems.	3	3	3	2	1	-	-	-	2	-	-	-	2	2
rigeration a	BME					CO3	Present the properties, applications, environmental issues of different refrigerants	3	1	-	-	2	2	3	-	1	-	-	-	2	1
Ref						C04	Calculate cooling load for air conditioning systems used for various applications.	3	3	3	2	2	-	-	-	1	-	-	-	2	2

ND COST						C01	Understand various contributing factors in process planning.	3	1	1	1	1	3	-	-	1	1	3	3	2	2
NING AN	CD1-812	8	3	45	0 0 3	C02	Estimate various cost elements.	3	3	3	2	3	2	-	-	2	1	3	3	2	2
ESS PLAN ESTIN	BME				(1)	CO3	Estimate machining time.	3	3	3	2	3	2	-	-	2	1	3	3	2	2
PROC						CO4	Estimate the production cost.	3	3	3	2	3	2	-	-	2	1	3	3	2	2
agement						C01	Analyse the energy and power scenario prevalent to the world.	3	3	3	3	3	3	3	-	3	1	3	3	2	2
n and Man	01-815	0	n	45	0 (C02	Understand the concept of HT & LT supply and the concept of lighting.	3	3	3	2	3	2	3	-	2	1	3	3	2	2
onservatio	BMECI	0	3	45	3 (CO3	Learn the consumption pattern of power in thermal systems.	3	3	3	2	3	2	3	-	2	1	3	3	2	2
Energy Cc						CO4	Understand the power consumption pattern in major utilities.	3	3	3	2	3	2	3	-	2	1	3	3	2	2
Janagement	01-822	0	ſ	45	0 (C01	Understand the fundamental theory of operation management and various stages of product design and development.	1										2	2	2	3
Operations N	BMECI	ō	3	45	3 (C02	Make forecasts in the manufacturing and service sectors using selected quantitative and Qualitative techniques.	1	2	2		2				1		2	2	2	2

						CO3	Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources.	1	2	3	3	3	2		1		2	2	2	2											
						CO4	Understand the role of information system in quality control.	1								2			1	2											
Operations Research	BMECD1-821	8				C01	Apply the concept of linear programming.	3	2		2	2							2	3											
				45		C02	Solve Transportation and Assignment Problems.	3	2		2	2							2	2											
			3		300	CO3	Apply the concept of queuing and network modeling.	3	2		2	1							2	2											
						C04	Employnon-linearprogrammingmodel,inventory model and gametheory.	3	1		1								1	1											
Sustainable Manufacturing	BMECD1-823	8				C01	Understand concept of sustainability and sustainable manufacturing.	2					2	3					2	2											
			3	45	300	3 0 0	3 0 0	3 0 0	0 0	3 0 0	3 0 0	3 0 0	3 0 0	3 0 0	3 0 0	3 0 0	C02	Learn the concept of Green Manufacturing and Environmental impact assessment.	2				2		3					2	2
						CO3	Apply the concept of lean principles and implementation.	2	2					3					2	2											
						C04	Understand the concept of product recovery management.	2						3					1	1											

t						C01	Understand the concept of Quality and the implication of Quality on Business.	1		2		2	2			3		2	2	2	2									
uality Managemen	3MECD1-813	8			300	C02	Apply total quality management principles and processes.	1	2	2	1	3				3		1	3	2	2									
			3	45		CO3	ApplyTQMtoolsandtechniquesandperformance measures.	1	2	3	2	3				2		2	2	2	2									
Safety and Environment Total Q	BMECD1-811	8			0	CO4	Get the knowledge of new developments in ISO 9000 and overview of other sector specific quality standards.	1	2				1					2	З	1	2									
						C01	Understand importance of safety at work	1		3			2	2					1	1	2									
				45 0 m		CO2	Understand various safety measures and importance of standards for safety	1		2		1	1			1		2		2	1									
			3		45 C m	45 0	45	45	45	45	3 0	3 0	3 0	3 0	3.0	45 O m	45 O m	45 0 8	CO3	Understand basics of environmental design		1	3					1	3	
Industria						CO4	Understand the control of Ventilation and heat etc			2	1				2		1			2	1									

Enter Correction levels 1, 2 or 3 as defined below:

 1. Slight (Low) - upto 30%
 2. Moderate (Medium) – above 30% and upto70%
 3. Substantial (High) – above 70%

So on...... (1st semester to last semester)